## AlexNet
(资料图片仅供参考)
[【第61篇】AlexNet:CNN开山之作](https://wanghao.blog.csdn.net/article/details/128503264)
## VGGNet
[【第1篇】VGG](https://wanghao.blog.csdn.net/article/details/120094424)
## GooLeNet系列
[【第2篇】GooLeNet](https://wanghao.blog.csdn.net/article/details/120110029)
[【第3篇】Inception V2](https://wanghao.blog.csdn.net/article/details/120148613)
[【第4篇】Inception V3](https://wanghao.blog.csdn.net/article/details/120156107)
[【第62篇】Inception-v4](https://wanghao.blog.csdn.net/article/details/128522765)
## ResNet
[【第5篇】ResNet](https://wanghao.blog.csdn.net/article/details/120178266)
## DenseNet
[【第10篇】DenseNet](https://wanghao.blog.csdn.net/article/details/120347118)
## Swin Transformer
[【第16篇】Swin Transformer](https://wanghao.blog.csdn.net/article/details/120724040)
[【第49篇】Swin Transformer V2:扩展容量和分辨率](https://wanghao.blog.csdn.net/article/details/127135297)
## MAE
[【第21篇】MAE(屏蔽自编码器是可扩展的视觉学习器)](https://wanghao.blog.csdn.net/article/details/121605608)
## CoAtNet
[【第22篇】CoAtNet:将卷积和注意力结合到所有数据大小上](https://wanghao.blog.csdn.net/article/details/121993729)
## ConvNeXtV1、V2
[【第25篇】力压Tramsformer,ConvNeXt成了CNN的希望](https://wanghao.blog.csdn.net/article/details/122451111)
[【第64篇】ConvNeXt V2论文翻译:ConvNeXt V2与MAE激情碰撞](https://wanghao.blog.csdn.net/article/details/128541957?spm=1001.2014.3001.5502)
## MobileNet系列
[【第26篇】MobileNets:用于移动视觉应用的高效卷积神经网络](https://wanghao.blog.csdn.net/article/details/122692846)
[【第27篇】MobileNetV2:倒置残差和线性瓶颈](https://wanghao.blog.csdn.net/article/details/122729844)
[【第28篇】搜索 MobileNetV3](https://wanghao.blog.csdn.net/article/details/122779006)
## MPViT
[【第29篇】MPViT:用于密集预测的多路径视觉转换器](https://wanghao.blog.csdn.net/article/details/122782937)
## VIT
[【第30篇】Vision Transformer](https://wanghao.blog.csdn.net/article/details/123695223)
## SWA
[【第32篇】SWA:平均权重导致更广泛的最优和更好的泛化](https://wanghao.blog.csdn.net/article/details/124409374)
## EfficientNet系列
[【第34篇】 EfficientNetV2:更快、更小、更强——论文翻译](https://wanghao.blog.csdn.net/article/details/117399085)
## MOBILEVIT
[【第35篇】MOBILEVIT:轻量、通用和适用移动设备的Vision Transformer](https://wanghao.blog.csdn.net/article/details/124546928)
## EdgeViTs
[【第37篇】EdgeViTs: 在移动设备上使用Vision Transformers 的轻量级 CNN](https://wanghao.blog.csdn.net/article/details/124730330)
## MixConv
[【第38篇】MixConv:混合深度卷积核](https://wanghao.blog.csdn.net/article/details/124779609)
## RepLKNet
[【第39篇】RepLKNet将内核扩展到 31x31:重新审视 CNN 中的大型内核设计](https://wanghao.blog.csdn.net/article/details/124875771)
## TransFG
[【第40篇】TransFG:用于细粒度识别的 Transformer 架构](https://wanghao.blog.csdn.net/article/details/124919932)
## ConvMAE
[【第41篇】ConvMAE:Masked Convolution 遇到 Masked Autoencoders](https://wanghao.blog.csdn.net/article/details/124988783)
## MicroNet
[【第42篇】MicroNet:以极低的 FLOP 实现图像识别](https://wanghao.blog.csdn.net/article/details/125177445)
## RepVGG
[【第46篇】RepVGG :让卷积再次伟大](https://wanghao.blog.csdn.net/article/details/126446922)
## MaxViT
[【第48篇】MaxViT:多轴视觉转换器](https://wanghao.blog.csdn.net/article/details/127064117)
## MAFormer
[【第53篇】MAFormer: 基于多尺度注意融合的变压器网络视觉识别](https://wanghao.blog.csdn.net/article/details/127492341)
## GhostNet系列
[【第56篇】GhostNet:廉价操作得到更多的特征](https://wanghao.blog.csdn.net/article/details/127981705)
[【第57篇】RepGhost:一个通过重新参数化实现硬件高效的Ghost模块](https://wanghao.blog.csdn.net/article/details/128090737)
## DEiT系列
[【第58篇】DEiT:通过注意力训练数据高效的图像transformer &蒸馏](https://wanghao.blog.csdn.net/article/details/128180419)
## MetaFormer
[【第59篇】MetaFormer实际上是你所需要的视觉](https://wanghao.blog.csdn.net/article/details/128281326)
## RegNet
[【第60篇】RegNet:设计网络设计空间](https://wanghao.blog.csdn.net/article/details/128339572)
# 注意力机制
[【第23篇】NAM:基于标准化的注意力模块](https://wanghao.blog.csdn.net/article/details/122092352)
# 物体检测
[【第6篇】SSD论文翻译和代码汇总](https://wanghao.blog.csdn.net/article/details/105788036)
[【第7篇】CenterNet](https://wanghao.blog.csdn.net/article/details/105593958)
[【第8篇】M2Det](https://wanghao.blog.csdn.net/article/details/105593927)
[【第9篇】YOLOX](https://wanghao.blog.csdn.net/article/details/119535667)
[【第11篇】微软发布的Dynamic Head,创造COCO新记录:60.6AP](https://wanghao.blog.csdn.net/article/details/120365468)
[【第12篇】Sparse R-CNN: End-to-End Object Detection with Learnable Proposals](https://wanghao.blog.csdn.net/article/details/120413137)
[【第13篇】CenterNet2论文解析,COCO成绩最高56.4mAP](https://wanghao.blog.csdn.net/article/details/120464708)
[【第14篇】UMOP](https://wanghao.blog.csdn.net/article/details/120506747)
[【第15篇】CBNetV2](https://wanghao.blog.csdn.net/article/details/120583025)
[【第19篇 】SE-SSD论文翻译](https://wanghao.blog.csdn.net/article/details/120875331)
[【第24篇】YOLOR:多任务的统一网络](https://wanghao.blog.csdn.net/article/details/122357992)
[【第31篇】探索普通视觉Transformer Backbones用于物体检测](https://wanghao.blog.csdn.net/article/details/123960815)
[【第36篇】CenterNet++ 用于对象检测](https://wanghao.blog.csdn.net/article/details/124623781)
[【第45篇】YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors](https://wanghao.blog.csdn.net/article/details/126302859)
# 行人属性识别
[【第66篇】行人属性识别研究综述(一)](https://wanghao.blog.csdn.net/article/details/128736760)
[【第66篇】行人属性识别研究综述(二)](https://wanghao.blog.csdn.net/article/details/128736732)
# 行人跟踪
[【第47篇】BoT-SORT:强大的关联多行人跟踪](https://wanghao.blog.csdn.net/article/details/126890651)
[【第65篇】SMILEtrack:基于相似度学习的多目标跟踪](https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/128615947)
[【第70篇】DeepSort:论文翻译](https://wanghao.blog.csdn.net/article/details/129003397)
# OCR
[【第20篇】像人类一样阅读:自主、双向和迭代语言 场景文本识别建模](https://wanghao.blog.csdn.net/article/details/121313548)
[【第44篇】DBNet:具有可微分二值化的实时场景文本检测](https://wanghao.blog.csdn.net/article/details/125513523)
# 超分辨采样
[【第33篇】SwinIR](https://wanghao.blog.csdn.net/article/details/124434886)
# 弱光增强
## RetinexNet
[【第52篇】RetinexNet: Deep Retinex Decomposition for Low-Light Enhancement](https://wanghao.blog.csdn.net/article/details/127400091)
[【第50篇】迈向快速、灵活、稳健的微光图像增强](https://wanghao.blog.csdn.net/article/details/127211265)
# NLP
[【第17篇】TextCNN](https://wanghao.blog.csdn.net/article/details/120729088)
[【第18篇】Bert论文翻译](https://wanghao.blog.csdn.net/article/details/120864338)
# 多模态
[【第43篇】CLIP:从自然语言监督中学习可迁移的视觉模型](https://wanghao.blog.csdn.net/article/details/125452516)
# 知识蒸馏
[【第54篇】知识蒸馏:Distilling the Knowledge in a Neural Network](https://wanghao.blog.csdn.net/article/details/127808674)
# 剪枝
[【第55篇】剪枝算法:通过网络瘦身学习高效卷积网络](https://wanghao.blog.csdn.net/article/details/127871910)
# 智慧城市
[【第51篇】用于交通预测的时空交互动态图卷积网络](https://wanghao.blog.csdn.net/article/details/127306179)
X 关闭
2023-02-21 05:54:30
2023-02-21 01:04:40
2023-02-20 21:41:00
2023-02-20 18:44:40
2023-02-20 17:05:58
2023-02-20 14:54:01
2023-02-20 12:53:38
2023-02-20 11:00:44
2023-02-20 09:12:15
2023-02-20 06:38:36
2023-02-20 02:00:01
2023-02-19 21:16:02
2023-02-19 18:08:04
2023-02-19 14:58:26
2023-02-19 11:49:58
2023-02-19 09:10:40
2023-02-19 05:56:06
2023-02-19 00:58:04
2023-02-18 20:59:03
2023-02-18 18:14:52
2023-02-18 15:36:04
2023-02-18 12:45:28
2023-02-18 10:08:08
2023-02-18 07:52:31
2023-02-18 02:53:48
2023-02-17 22:53:34
2023-02-17 20:11:03
2023-02-17 18:00:09
2023-02-17 16:51:19
2023-02-17 15:01:51
2023-02-17 13:14:10
2023-02-17 11:03:05
2023-02-17 08:59:32
2023-02-17 06:48:55
2023-02-17 01:41:04
2023-02-16 22:06:35
2023-02-16 19:09:16
2023-02-16 17:15:48
2023-02-16 15:41:32
2023-02-16 13:34:01
2023-02-16 11:09:52
2023-02-16 09:24:52
2023-02-16 07:02:59
2023-02-16 06:41:32
2023-02-16 03:54:42
2023-02-16 01:54:02
2023-02-16 00:42:36
2023-02-15 22:51:56
2023-02-15 21:24:08
2023-02-15 20:43:23
2023-02-15 18:52:34
2023-02-15 18:17:46
2023-02-15 16:43:31
2023-02-15 15:15:47
2023-02-15 14:37:00
2023-02-15 14:02:56
2023-02-15 11:59:05
2023-02-15 10:49:33
2023-02-15 10:16:11
2023-02-15 08:54:12
2023-02-15 06:27:08
2023-02-15 05:51:24
2023-02-15 02:23:45
2023-02-15 01:56:41
2023-02-14 22:47:29
2023-02-14 22:01:15
2023-02-14 20:07:15
2023-02-14 18:37:03
2023-02-14 18:02:05
2023-02-14 16:10:57
2023-02-14 14:34:48
2023-02-14 14:26:21
2023-02-14 12:14:50
2023-02-14 10:56:15
2023-02-14 08:51:44
2023-02-14 06:28:42
2023-02-14 04:46:53
2023-02-14 01:53:20
2023-02-14 00:47:46
2023-02-13 21:49:15
2023-02-13 21:09:04
2023-02-13 19:34:03
2023-02-13 17:51:30
2023-02-13 16:10:01
2023-02-13 14:14:34
2023-02-13 11:56:19
2023-02-13 10:01:37
2023-02-13 09:13:30
2023-02-12 13:47:20
2023-02-12 10:56:47
2023-02-12 07:58:24
2023-02-12 03:55:17
2023-02-11 23:01:51
2023-02-11 20:03:43
2023-02-11 16:48:59
2023-02-11 13:50:01
2023-02-11 10:07:17
2023-02-11 07:49:11
2023-02-11 04:05:54
2023-02-11 01:14:31
Copyright © 2015-2022 化工头条网版权所有 备案号:沪ICP备2022005074号-20 联系邮箱:58 55 97 3@qq.com